National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Acceleration of Lattice-Boltzmann Algorithms for Bloodflow Modeling
Kompová, Radmila ; Kešner, Filip (referee) ; Jaroš, Jiří (advisor)
This thesis aims to explore possible implementations and optimizations of the lattice-Boltzmann method. This method allows modeling of fluid flow using a simulation of fictive particles. The thesis focuses on possible improvements of the existing tool HemeLB which  is designed and optimized for bloodflow modeling. Several vectorization and paralellization approaches that could be included in this tool are explored. An application focused on comparing chosen algorithms including optimizations for the lattice-Boltzmann method was implemented as a part of the thesis. A group of tests focused on comparing this algorithms according to performance, cache usage and overall memory usage was performed. The best performance achieved was 150 millions of lattice site updates per second.
Hardware Acceleration of Algorithms for Approximate String Matching
Nosek, Ondřej ; Kořenek, Jan (referee) ; Martínek, Tomáš (advisor)
Methods for aproximate string matching of various sequences used in bioinformatics are crucial part of development in this branch. Tasks are of very large time complexity and therefore we want create a hardware platform for acceleration of these computations. Goal of this work is to design a generalized architecture based on FPGA technology, which can work with various types of sequences. Designed acceleration card will use especially dynamic algorithms like Needleman-Wunsch and Smith-Waterman.
Acceleration of Lattice-Boltzmann Algorithms for Bloodflow Modeling
Kompová, Radmila ; Kešner, Filip (referee) ; Jaroš, Jiří (advisor)
This thesis aims to explore possible implementations and optimizations of the lattice-Boltzmann method. This method allows modeling of fluid flow using a simulation of fictive particles. The thesis focuses on possible improvements of the existing tool HemeLB which  is designed and optimized for bloodflow modeling. Several vectorization and paralellization approaches that could be included in this tool are explored. An application focused on comparing chosen algorithms including optimizations for the lattice-Boltzmann method was implemented as a part of the thesis. A group of tests focused on comparing this algorithms according to performance, cache usage and overall memory usage was performed. The best performance achieved was 150 millions of lattice site updates per second.
Hardware Acceleration of Algorithms for Approximate String Matching
Nosek, Ondřej ; Kořenek, Jan (referee) ; Martínek, Tomáš (advisor)
Methods for aproximate string matching of various sequences used in bioinformatics are crucial part of development in this branch. Tasks are of very large time complexity and therefore we want create a hardware platform for acceleration of these computations. Goal of this work is to design a generalized architecture based on FPGA technology, which can work with various types of sequences. Designed acceleration card will use especially dynamic algorithms like Needleman-Wunsch and Smith-Waterman.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.